SPECTROSCOPIC AND THERMAL STUDIES ON PLATINUM(II) IODIDE COMPLEXES WITH PRIMARY AMINES

G. FARAGLIA and L. SINDELLARI

Dipartimento di Chimica Inorganica, Metallorganica ed Analitica dell' Università, via Loredan 4, 35100-Padova (Italy)

S. SITRAN

Istituto di Chimica e Tecnologia dei Radioelementi del C.N.R., Padova (Italy) (Received 13 October 1986)

ABSTRACT

The complexes cis- and trans-[PtL₂I₂], [PtBua₃I]I and [PtL₄]I₂, where L = butan-1-amine (Bua) or hexan-1-amine (Hea), have been prepared and characterized by elemental analyses, IR and ¹H NMR spectra and TG, DTG, DTA measurements. Thermal degradation of the 1:3 and 1:4 species yields the corresponding trans complexes as intermediates. Moreover, the cis species isomerize to trans without decomposition. In the ¹H NMR spectra of the 1:2 and 1:4 derivatives, the NH₂ proton signal is characteristic of the stoichiometry and geometry, whereas [PtBua₃I]I decomposes in most solvents, releasing one of the ligand molecules to give trans-[PtBua₂I₂] solutions.

INTRODUCTION

In the past few years we have reported on various platinum(II) halide complexes with hexan-1-amine (Hea) and propan-1-amine (Pra) having the formulae *cis*- and *trans*-[PtL₂X₂], [PtL₃X]X and [PtL₄]X₂ (X = Cl or Br), which were characterized either in the solid state (IR and thermal analysis) or in solution (¹H NMR spectra) [1,2]. We extended the study to the iodo-derivatives [3], due to their use as intermediates in the preparation of drugs for anti-tumour tests [4,5]. When aquo-ion solutions are used in biological tests particular attention must be paid to the purity of the starting platinum iodide amino complexes. In this line, a recent paper reports the preparation of pure *cis*-[Pt(NH₃)₂I₂] through formation of solvates with formamides and its behaviour in aqueous KI and HI solutions [6].

In this paper we report the preparation of the PtI_2 complexes with hexan-1-amine and butan-1-amine (Bua) and their characterization by IR, ¹H NMR and thermal analysis data.

EXPERIMENTAL

The reagents used were PtI_2 (Johnson Matthey), $K_2[PtCl_4]$ (Fluka), hexan-1-amine (C. Erba) and butan-1-amine (Janssen). The reactions were generally carried out at room temperature.

Preparation of the complexes

trans-[$PtHea_2I_2$]

The complex was prepared by reacting PtI_2 (0.7 mmol) with Hea (1.6 mmol) in benzene (5 cm³) with stirring (6 h). The resultant yellow solid was filtered, washed with *n*-pentane and dried in vacuo. Further fractions of product were obtained by partial evaporation of the residual benzene solution and subsequent addition of *n*-pentane (yield, 80%). The compound can be recrystallized from benzene/*n*-pentane. The melting point range was $110-112^{\circ}$ C and the experimental composition was: C, 22.2; H, 4.7; N, 4.3% (calculated (for $C_{12}H_{30}I_2N_2Pt$): C, 22.1; H, 4.7; N, 4.3%). It was also prepared in a nearly quantitative yield by stirring (4 h) a PtI_2 (0.5 mmol) suspension in a Et_2O solution of Hea (1.1 mmol in 5 cm³). The reaction went on in heterogeneous phase, yielding the slightly soluble *trans* isomer. Pure samples were also obtained by evaporation to dryness of carefully filtered acetone solutions of the crude product and by heating [PtHea₄]I₂ under reduced pressure (ca. 80° C).

$cis-[PtHea_2I_2]$

Aqueous KI (3.7 mmol in 2.0 cm³ of H_2O) was added to an aqueous solution of $K_2[PtCl_4]$ (0.9 mmol in 5 cm³). The dark red solution was carefully filtered from a yellow undissolved residue. Addition of Hea (1.8 mmol) with vigorous stirring yielded a pinkish solid, which was filtered, washed with H_2O and dried under reduced pressure. The solid, washed with Et_2O , was recrystallized from benzene/*n*-hexane and finally washed with Et_2O (yield, 60%, m.p., 102–103°C; found: C, 22.1; H, 4.7; N, 4.3%).

$[PtHea_4]I_2$

PtI₂ (0.5 mmol) was allowed to dissolve in a Et₂O solution of Hea (2.2 mmol in 5 cm³; 4 h). Slow evaporation of the filtered yellow solution yielded white crystals of the compound, which were washed with *n*-pentane. The compound can be purified by evaporation of solutions in *n*-hexane, in which the complex is slightly soluble (yield, 90%; m.p., 84–85°C; C, 33.7; H, 7.2; N, 6.6%; calculated (for $C_{24}H_{60}I_2N_4Pt$): C, 33.8; H, 7.1; N, 6.6%).

trans-[$PtBua_2I_2$]

The yellow solution obtained by reacting PtI_2 (0.4 mmol) and Bua (0.8 mmol) in benzene (3 cm³) was filtered from the small undissolved residue (a

mixture of *cis* and 1:3 species from IR spectra). The first solid fraction obtained after addition of *n*-hexane was discarded (*cis-trans* mixture). Further addition of *n*-hexane gave the yellow compound. It can be recrystallized from benzene/*n*-hexane (yield, 70%; m.p., 140–142°C; C, 16.2; H, 3.7; N, 4.7%; calculated (for $C_8H_{22}I_2N_2Pt$): C, 16.1; H, 3.7; N, 4.7%). The compound can be easily obtained by thermal decomposition of the corresponding 1:3 and 1:4 complexes under reduced pressure (ca. 130°C).

$cis-[PtBua_2I_2]$

Prepared by the method used for cis-[PtHea₂I₂]. The yellow solid was recrystallized from benzene (yield, 60%; m.p., 140–142°C; C, 16.1; H, 3.7; N, 4.7%).

$[PtBua_{3}I]I$

The reaction of PtI₂ (0.4 mmol) with Bua (1.3 mmol) in Et₂O yielded (6 h, with stirring) a white solid and a yellow solution. The solid, filtered and washed with Et₂O, was [PtBua₄]I₂ impure for the 1:3 complex (by IR spectra). The residual Et₂O solution, kept at ca. – 20 °C, yielded greenish-white crystals of the compound, which were filtered, washed with small fractions of cold Et₂O (in order to eliminate traces of the *trans* species) and finally with *n*-pentane (yield, 50%; C, 21.7; H, 5.1; N, 6.3%; calculated (for $C_{12}H_{33}I_2N_3Pt$): C, 21.6; H, 5.0; N, 6.3%).

$[PtBua_4]I_2$

A suspension of PtI_2 (0.6 mmol) in a Et_2O solution of Bua (2.9 mmol in 5 cm³) yielded, overnight with stirring, a white solid, which was filtered and washed with Et_2O and *n*-pentane. It was recrystallized from benzene/*n*-pentane (yield, 80%; m.p., 127–129°C; C, 26.0; H, 6.1; N, 7.5%; calculated (for $C_{16}H_{44}I_2N_4Pt$): C, 25.9; H, 6.0; N, 7.6%).

Measurements

The IR spectra were recorded by using either a Perkin Elmer 580B spectrophotometer (4000–400 cm⁻¹) or a Bruker FT IR instrument (450–100 cm⁻¹) as Nujol mulls between KBr and polyethylene discs. The ¹H NMR spectra were obtained using a Jeol FX 90 Q spectrometer. The TG, DTG, and DTA curves in dinitrogen (flux rate, 250 cm³ min⁻¹; heating rate, 5° C min⁻¹) were recorded on a Netzsch STA 429 thermoanalytical instrument (reference material, neutral Al₂O₃).

RESULTS AND DISCUSSION

The compounds (Table 1) were generally prepared in organic media by reaction of platinum iodide and amine in the appropriate molar ratio, except

Compound	Solubility					Frequency (cm ⁻¹)	
	MeOH	C ₆ H ₆	Me ₂ CO	Et_2O	CH_2CI_2	μ(NH)	$\delta(\rm NH_2)$
trans-[PtHea ₂ I ₂]		SV	NS	sls	SV	3243(s), 3208(s), 3130(m)	1578(s)
cis-[PtHea ₂ 1 ₂]	s	vs	VS	. <mark>.</mark>	vs	3228(sh), 3203(sbr), 3118(w)	1565(s)
[PtHea ₄]I ₂	sls	S	S	s	s	3190(sh), 3130(sh), 3075(sbr)	1608(wbr), 1590(sh)
trans-[PtBua ₂ 1 ₂]	s	vs	vs	s	vs	3248(m), 3212(s), 3132(m)	1578(s)
cis-[PtBua ₂ I ₂]	sls	sls	SV	i	ŝ	3230(sh), 3202(sbr), 3115(w)	1565(s)
[PtBua ₃ I]]	s	s	VS	sls	VS	3205(sh), 3180(sbr), 3110(m)	1574(s)
[PtBua4]I2	VS	S	VS	i	SN	3200(sh), 3140(sbr), 3080(sbr)	1610(wbr), 1590(sh)
^a At room tempers sls) and in <i>n</i> -hex	ture: i, insolu ane (except fe	uble; s, solu or [PtHea4]	ble, sls, slight II ₂ , sls). All th	ly soluble; ie complexe	vs, very soluble es are soluble	le. The complexes are insoluble in in DMSO and in DMF.	H ₂ O (except for [PtBua ₄]l ₂ ,

gior
reg
ī
Ë
8
15
5
165
σ
an
7
Б
ŝ
ŝ
ģ
350
e.
는
.Ц
ies
ğ
'n
ĕ
đ
ē.
Ę
Ξ.
Б
ġ.
ŝ
itié
P
lu l
2

TABLE 1

for *cis* derivatives, which were prepared by reaction of $[PtI_4]^{2-}$ and amine in water. The *trans* isomers were also obtained by thermal decomposition of the higher stoichiometry derivatives and by thermal isomerization of the parent *cis* species. Owing to their solubility in organic solvents (Table 1) the complexes can be easily purified, except for $[PtBua_3I]I$, which generally releases one ligand molecule, yielding yellow solutions of *trans*- $[PtBua_2I_2]$. Since the process is slow in diethylether, the compound has been prepared in this solvent by reaction of platinum iodide and Bua (molar ratio 1:3.1) and stored at about 5°C. In analogous conditions, the 1:3 Hea derivative was isolated in a low yield and impure form for $[PtHea_4]I_2$. Attempts to recrystallize $[PtHea_3I]I$ were unsuccessful, owing to its easy decomposition and to its solubility, very close to that of the parent 1:4 complex.

The trend of the infrared absorptions in the $\nu(NH)$ and $\delta(NH_2)$ regions (Table 1) is strictly related to stoichiometry and geometry and, apart for small halide-dependent shifts, it is very close to that of the chloro- and bromo-derivatives [1]. The *trans* species show, beyond 3000 cm^{-1} , three sharp absorptions, whereas the cis species and [PtBua₃I]I present a strong, broad band at 3200 cm⁻¹ and 3180 cm⁻¹, respectively. Owing to the presence of strong hydrogen bonds with iodides, the 1:4 complex absorptions are at lower energy (ca. 3100 cm^{-1}), the corresponding bending mode bands being at 1610 cm⁻¹. The halide-dependent $\delta(NH_2)$ absorptions shift in the trans-[PtHea₂X₂] series from 1587 (X = Cl) to 1582 cm⁻¹ (X = Br) and 1578 cm⁻¹ (X = I) and in the analogous *cis* series from 1578 (X = Cl) to 1570 cm⁻¹ (X = Br) and 1565 cm⁻¹ (X = I). A similar behaviour was observed for the parent platinum halide complexes with Pra. The platinum-iodine stretching frequencies (Table 2) are as expected. The cis isomers present a strong band at ca. 177 cm^{-1} , shifted to higher frequencies in the *trans* isomers (191 cm⁻¹). The compound [PtBua₃I]I exhibits, together with $\nu(Pt-I)$ at 188 cm⁻¹, a strong absorption at 278 cm⁻¹, common to the 1:4 species (289 cm⁻¹), probably to be assigned to Pt–N stretching [7-10].

The thermal analysis data are summarized in Table 3. The *trans* species melt without decomposition (Hea, 115°C; Bua, 143°C) and their degradation starts at ca. 190°C. The thermograms of *cis*-[PtBua₂I₂] (Fig. 1) clearly show the isomerization exotherm at 122°C, followed by the melting endotherm of the *trans* species, as observed for *cis*-[PtPra₂I₂] (isomerization exotherm 125°C; melting exotherm, 203°C). The isomerization process starts in *cis*-[PtHea₂I₂] (Fig. 2) at 90°C, then melting of the *cis*-*trans* mixture takes place (100°C) followed by further isomerization in the melt (107°C). At higher temperatures the thermograms coincide with those of the *trans* derivatives, as for the 1:4 complexes after releasing of two ligand molecules. The thermal behaviour of [PtBua₃I]I differs from that of [PtPra₃I]I, which releases one ligand molecule in a single step (109°C) to give *trans*-[PtPra₂I₂]. As is shown in Fig. 3, the release of the first ligand

Infrared frequencies (45)	$(100 \text{ cm}^{-1}; \nu)$	Pt-I) are underlined) and ¹ H NMR data in	n CDCl ₃ (ppm; <i>T</i> , ca	. 25°C)		[
Compound	Infrared freq	luency (cm ⁻¹)	NMR chemical s	hift (ppm)		
			NH ₂ ^{a,b}	aCH ₂ ^b	βCH_2	
irans-[PtHea, I,]	403(vw), 33	9(w), 267(mw), 224(vw), 191(s), 88(w)	3.25	2.9	1.4 °	1
cis-[PtHea, I,]	401(vw), 32	.7(vw), 254(vw), 178(m)	4.35	2.9	1.7	
[PtHea,]I,	405(vw), 34	.2(vw), 289(sbr), 225(wbr), 135(wbr)	5.65	2.7	1.85	
trans-[PtBua, I,]	34	6(w), 265(mw), 191(s), 89(w)	3.25	2.9	1.4 °	
cis-[PtBua, 1,]	33	11(vw), 253(vw), <u>176(m)</u>	4.35	2.9	1.65	
[PtBua,I]]	443(vw), 43	(3(vw), 278(sbr), 228(vw), 188(m)	5.6w-3.2 ^d	2.7-2.9		
[PtBua ₄]] ₂	455(wbr), 43	0(vw), 347(w), 289(sbr), 1 <u>80(</u> wv)	5.65	2.7	1.80	
^a Coupling with ¹⁹⁵ Pt (J ^b Broad signals. ^c Superimposed on the ¹ ^d The solution, initially	ca. 60 Hz) is o signals of the ot colourless, turns	bserved. her CH ₂ groups. s to yellow in 5 min, owing to formation of	the trans species.			

TABLE 2 Inferent frequencies (450–100 cm^{-1} , "(Pt–1) are underlined) and ^{1}H NM

234

Compound					
	Decomposition	TG weight loss (%)		DTA peak temperature ($^{\circ}$ C) ^a	
-	nierval (~ U)	Experimental	Calculated		
trans-[PtHea212] 1	195-370	68.6	70.0 (2Hea + 2I)	115(m), 220(ex), 345(d)	
cis-[PtHea ₂ I ₂] 1	185-370	68.7	70.0(2Hea + 2I)	95(iso), 100(m), 107(iso), 222(ex), 345(d)	
[PtHea ₄]I ₂	80 - 190	23.6	23.7(2Hea)	95(m), 137(d)	
1	190-370	52.4	53.4(2Hea+2I)	225(ex), 345(d)	
trans-[PtBua ₂ I ₂]	190-370	66.8	67.2(2Bua + 2I)	143(m), 216(ex), 345(d)	
<i>cis</i> -[PtBua ₂ I ₂] 1	190-370	66.4	67.2(2Bua + 2I)	122(iso), 143(m), 216(ex), 345(d)	
[PtBua ₃ I]I	55-140	11.0	10.9(1Bua)	90(d), 135(shd), 143(m)	
1	180-370	59.2	59.9(2Bua + 2I)	216(ex), 345(d)	
[PtBua ₄]I ₂	95-145	19.7	19.7(2Bua)	134(d), 143(m)	
1	175-370	52.8	54.0(2Bua + 2I)	216(ex), 345(d)	

TABLE 3

Fig. 1. Thermograms of cis-[PtBua₂I₂] (56.42 mg).

Fig. 2. Thermograms of cis-[PtHea₂I₂] (39.04 mg).

Fig. 3. Thermograms of [PtBua₃I]I (45.54 mg).

molecule takes place in two steps, the related DTA peaks being at 90 °C and 135 °C. IR and ¹H NMR spectra of [PtBua₃I]I samples heated up to 90 °C are in accordance with the formation of *trans*-[PtBua₂I₂] and, in part, of [PtBua₄]I₂. Both species are absent in the starting product, whose IR spectrum shows an absorption minimum below 3100 cm⁻¹, where the 1:4 complex absorbs strongly. The relative intensity of the steps depends on the amount of substance in the crucible. If a few milligrams are used, the second step is minimized.

The ¹H NMR data in deuterated chloroform are reported in Table 2. Whereas the α CH₂ and β CH₂ resonances are quite close for all complexes, the NH₂ proton signal is affected by stoichiometry and geometry (Fig. 4). For the *trans* species it is observed upfield (3.25 ppm) with respect to the corresponding signal in the *cis* isomer (4.35 ppm), allowing the detection of *cis* to *trans* isomerization processes in solution. The NH₂ resonances of the 1:4 complexes are downfield with respect to those of the 1:2 complexes, as observed previously for analogous halides. The ¹H NMR spectrum of a solution of [PtBua₃I]I is initially similar to those of the chloro- and bromohomologues and presents two NH₂ signals, due to the different environment of the ligand molecules in the square planar [PtBua₃I]⁺ moiety. In a short time the solution turns from colourless to yellow and the downfield signal

Fig. 4. ¹H NMR spectra in CDCl₃: a, trans-[PtHea₂I₂]; b, cis-[PtHea₂I₂]; c, [PtHea₄]I₂.

decreases progressively, the final spectrum coinciding with that of *trans*- $[PtBua_2I_2]$. In conclusion, either the *cis* species or $[PtBua_3I]I$ present a low stability in solution. Among the complex series prepared, the bromo-derivatives seem to be the more useful intermediates in the preparation of aquo-ion solutions and compounds of biochemical interest, owing to the easy purification and the solubility and stability characteristic.

ACKNOWLEDGEMENT

The authors thank Mrs Franca Marzola for far-infrared spectra registration.

REFERENCES

- 1 G. Faraglia, L. Sindellari and S. Sitran, Thermochim. Acta, 78 (1984) 159.
- 2 V. Cherchi, G. Faraglia, L. Sindellari and S. Sitran, Transition Met. Chem., 10 (1985) 76.

- 3 G. Faraglia, L. Sindellari, V. Cherchi and S. Sitran, Transition Met. Chem., 11 (1986) 98.
- 4 P.C. Hydes and B.W. Malerbi, U.S. 4,225,529 (C1.260-49R; C07F15/00; 1980); Chem. Abstr., 94 (1981) 77033m.
- 5 M.L. Tobe, A.R. Khokhar and P.D.M. Braddock, Ger. Offen., 2,715,492 (Cl.A61K31/28; 1977); Chem. Abstr., 88 (1978) 99314g.
- 6 G. Raudaschl, B. Lippert, J.D. Hoeschele, H.E. Howard-Lock, C.J.L. Lock and P. Pilon, Inorg. Chim. Acta, 106 (1985) 141.
- 7 C. Engelter, A.T. Hutton and D.A. Thornton, J. Mol. Struct., 44 (1978) 23.
- 8 M. Pfeffer, P. Braunstein and J. Dehand, Spectrochim. Acta, Part A, 30 (1974) 341.
- 9 M. Pfeffer, P. Braunstein and J. Dehand, Inorg. Nucl. Chem. Lett., 8 (1972) 497.
- 10 G.W. Watt, L.K. Thompson and A.J. Pappas, Inorg. Chem., 11 (1972) 747.